Mitigation on AIM Cryptanalysis

Seongkwang Kim ${ }^{1}$
Mingyu Cho ${ }^{1}$
Jihoon Kwon ${ }^{1}$
Joohee Lee ${ }^{3}$
Sangyub Lee ${ }^{1}$
Mincheol Son ${ }^{2}$
${ }^{1}$ Samsung SDS, Seoul, Korea
${ }^{2}$ KAIST, Daejeon, Korea
${ }^{3}$ Sungshin Women's University, Seoul, Korea
SAMSUNG SDS KAIST

Recap on AIM and AIMer

MPCitH-based Digital Signature

- MPCitH protocol + One-way function \Rightarrow Digital signature
- BN++ protocol + AIM \Rightarrow AIMer signature

Symmetric Primitive AIM

Scheme	λ	n	ℓ	e_{1}	e_{2}	e_{3}	e_{*}
AIM-I	128	128	2	3	27	-	5
AIM-III	192	192	2	5	29	-	7
AIM-V	256	256	3	3	53	7	5

- Mersenne S-box
- Invertible, high-degree, quadratic relation
- Requires a single multiplication
- Produces $3 n$ quadratic equations
- Moderate DC/LC resistance
- Repetitive structure
- Parallel application of S-boxes
- Feed-forward construction
- Fully exploit the BN++ optimizations
- Locally-computable output share
- Randomized structure
- Affine layer is generated from XOF

Al Mer Signature Scheme

- AlMer $=\mathrm{BN}++$ proof of knowledge of AIM input
- Security is based on the one-wayness of AIM in the ROM
- Advantages
- Security based on only symmetric primitives
- Fast key generation
- Small key sizes
- Trade-offs between signatures size and speed
- Randomness misuse resistance
- Limitations
- Newly-designed symmetric primitive AIM
- Moderately large signature size (3.8~5.9 KB)
- Slow signing/verifying speed (0.59~22 ms)

Scheme	pk (B)	sig (B)	Sign (ms)	Verify (ms)
Dilithium2	1312	2420	0.10	0.03
Falcon-512	897	690	0.27	0.04
SPHINCS+-128s	32	7856	315.74	0.35
SPHINCS+-128f	32	17088	16.32	0.97
Picnic1-L1-full	32	30925	1.16	0.91
Picnic3	32	12463	5.83	4.24
Banquet	32	19776	7.09	5.24
Rainier		32	8544	0.97
BN++Rain $_{3}$	32	6432	0.83	0.89
AlMer-L1	32	5904	0.59	0.77
AIMer-L1	32	3840	22.29	21.09

Analyses on AIM

Recent Analysis on AIM

- Recent algebraic analysis on the symmetric primitive AIM
- Fukang Liu, et al. "Algebraic Attacks on RAIN and AIM Using Equivalent Representations". Cryptology ePrint Archive. Report 2023/1133
- Private communication with Fukang Liu
- Markku-Juhani O. Saarinen. "Round 1 (Additional Signatures) OFFICIAL COMMENT: AIMER", pqc-forum. https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2ilXbINy0
- Kaiyi Zhang, et al. "Algebraic Attacks on Round-Reduced RAIN and Full AIM-III". ASIACRYPT 2023.
- There are two vulnerabilities in the structure of AIM
- Low degree equations in n variables \Rightarrow Fast algebraic attack (w/ memory optimization)
- Common input to the parallel Mersenne S-boxes \Rightarrow Structural vulnerability

Fast Algebraic Attack

- Build low degree equations in n Boolean variables and apply the fast exhaustive search attack with memory-efficient Möbius transform.

	n	Degree	Time [bits]	Memory [bits]
AIM-I	128	10	$2^{136.2}(-10.2)$	$2^{61.7}$
AIM-III	192	14	$2^{200.7}(-11.2)$	$2^{84.3}$
AIM-V	256	15	$2^{265.0}(-12.0)$	$2^{95.1}$

* Compared to the claimed security level

Structural Vulnerability

- Let $w=\mathrm{pt}^{-1}$ then $\operatorname{Mer}[e](\mathrm{pt}):=\mathrm{pt}^{2^{e}-1}=\mathrm{pt}^{2^{e}} w$.
- A $2 n$-variable system having
- $5 n$ quadratic equations (from $w=\mathrm{pt}^{-1}$) and
- $5 n$ cubic equations (from Mer $\left[e_{*}\right]$)
- No practical attack exists on the above system, but the system is not considered in the first proposal.

Structural Vulnerability

- Let $w=\mathrm{pt}^{-1}$ then $\operatorname{Mer}[e](\mathrm{pt}):=\mathrm{pt}^{2^{e}-1}=\mathrm{pt}^{2^{e}} w$.
- $\operatorname{Mer}\left[e_{i}\right](\mathrm{pt})=\mathrm{pt}^{2^{e_{i}}} \cdot w$ for $i=1, \ldots, \ell$ can be computed by precomputing the linear matrices for $E_{i}: \mathrm{pt} \mapsto \mathrm{pt}^{2^{e_{i}}}$.
- (e.g.) AIM-I
- $\mathrm{ct}=\left(\mathrm{pt}^{2^{3}-1} \cdot A_{1}+\mathrm{pt}^{2^{27}-1} \cdot A_{2}+b\right)^{2^{5}-1}+\mathrm{pt}$
- $\left\{\begin{array}{l}u=\mathrm{pt} \cdot E_{3} \cdot w \cdot A_{1}+\mathrm{pt} \cdot E_{27} \cdot w \cdot A_{2}+b \\ u \cdot E_{5}=(\mathrm{ct}+\mathrm{pt}) \cdot u\end{array}\right.$

Structural Vulnerability

- Let $\operatorname{Mer}\left[e_{i}\right](\mathrm{pt})=\left(\mathrm{pt}^{d}\right)^{s_{i}} \cdot \mathrm{pt}^{t^{t_{i}}}$ for some $d \mid 2^{n}-1$ and guess the value of pt^{d}.
- The Mersenne S-boxes are linearized by the guessing.

	n	d	Time [enc]
AIM-I	128	5	$2^{125.7}(-2.3)$
AIM-III	192	45	$2^{186.5}(-5.5)$
AIM-V	256	3	$2^{254.4}(-1.6)$
* Compared to the claimed security level			

AIM2: Secure Patch for Algebraic Attacks

Scheme	λ	n	ℓ	e_{1}	e_{2}	e_{3}	e_{*}
AIM2-I	128	128	2	49	91	-	3
AIM2-III	192	192	2	17	47	-	5
AIM2-V	256	256	3	11	141	7	3

- Inverse Mersenne S-box
- $\operatorname{Mer}[e]^{-1}(x)=x^{a}$
- $a=\left(2^{e}-1\right)^{-1} \bmod \left(2^{n}-1\right)$
- More resistant to algebraic attacks
- Larger exponents
- To mitigate fast exhaustive search
- Fixed constant addition
- To differentiate inputs of S-boxes
- Increase the degree of composite power function

$$
\left(x^{a}\right)^{b} \text { vs }\left(x^{a}+c\right)^{b}
$$

Analysis on AIM2

- Algebraic attacks
- Fast exhaustive search: mitigated by high exponents
- Brute-force search of quadratic equations
- Toy experiment of good intermediate variables
- Other attacks
- Exhaustive key search: slightly increased complexity
- LC/DC: almost same
- Quantum attacks: complexities change not critically
- Performance
- Signature size: exactly the same
- Sign/verify time: about 10% increase

Thank you!

 Check out our website!

